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• Urbanization decreases the maximal spa-
tial extent of watershed-scale connectivity.

• Urbanization focuses sediment transport
into fewer, frequently wetted pathways.

• Watershed-scale connectivity corresponds
to stream sediment loading 50 % of
the time.
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The conversion of rural lands to urban areas exerts considerable influence on the hydrologic processes governing sed-
iment transport at thewatershed scale.While the effects of urbanization on hydrology have beenwell-studied, the cor-
responding impact to the spatial and temporal variability of sediment detachment, transport, and connectivity is less
certain. To address this knowledge gap, we apply process-based hydrologic simulation, probabilistic connectivity
modeling, and in situ turbidity sensing to five watersheds positioned along a steep land use gradient in Kansas,
USA. Connectivity modeling results show that urbanization systematically decreases the maximal extent of
watershed-scale connectivity on the wettest days of the study period, from 51 % in the most rural watershed to
28 % in the most urban watershed. On the other hand, urbanization focuses sediment transport into fewer, more fre-
quently wetted pathways, such as roadway drainage networks, which are activated 3.5 timesmore frequently than the
equivalent pathways in rural basins. In this way, urbanization limits maximal connectivity as impervious surfaces in-
definitely disconnect source zones from the sediment cascade, but also catalyzes hot spots of connectivity as these same
impervious areas generate excess runoff and channel it to drainage systems. The 23.9 ± 4.2 % of days that exhibit
watershed-scale functional connectivity account for 85.0 ± 9.5 % of sediment export with most of the export tied
to a few highly connected days. Sensing results show that increases in watershed-scale connectivity only translate to
larger fluvial sediment loads after a connectivity threshold (themedian connected day) has been exceeded, suggesting
a transition from functional to structural connectivity control on sediment dynamics after sufficient wetting. This study
highlights the role of land use impacts on the sources and mechanisms of sediment transport, which will be an impor-
tant consideration for land managers as urban areas continue to expand to accommodate global migration patterns.
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1. Introduction

Managing soil erosion is one of the largest sustainability challenges of
the 21st century (Borrelli et al., 2020). Land use change, such as urbaniza-
tion and agricultural exploitation, often exacerbates soil erosion and can
cause reduced agricultural productivity, stream degradation, aquatic habi-
tat loss, and infrastructure risk (Wood and Armitage, 1997; Russell et al.,
2018; Llena et al., 2019; Kroese et al., 2020). Soil erosion will continue to
be an ongoing environmental concern as the global urban population is
projected to nearly double to 66 % of the world's population by 2050
(Bettencourt et al., 2018; Borrelli et al., 2020). In urban regions, wide-
spread impervious land cover acts to induce greater runoff and shear,
which increase the capacity for sediment transport (Ferreira et al., 2020;
Noe et al., 2020). In rural areas, removal of native vegetation and tilling
practices expose bare sediment and increase the supply for potential trans-
port (Kroese et al., 2020). How sediment is linked from source to sink,
termed connectivity, has been the topic of much recent study (Fryirs
et al., 2007; Borselli et al., 2008; Bracken et al., 2015; Mahoney et al.,
2018, 2020a, 2020b); however, there exists a lack of studies that address
the role of land use impacts in shifting the dominant sources, transport
pathways, and mechanisms of sediment connectivity.

Sediment connectivity is the transfer of eroded sediment between land-
scape components and is a function of static and dynamic watershed
attributes (Fryirs et al., 2007), giving rise to two forms of sediment connec-
tivity: structural and functional (Heckmann et al., 2018; Baartman et al.,
2020; Michalek et al., 2021). Structural connectivity refers the spatial con-
figuration of morphometric features within a system, such as slope and soil
texture, that vary little from one event to the next. On the other hand, func-
tional connectivity refers to the dynamic variability through space and time
of runoff and soil moisture conditions in response to hydrologic events.
Models and concepts of these two connectivity paradigms have emerged,
such as the Index of Connectivity (IC; Borselli et al., 2008), which estimates
structural connectivity, and the Probability of Sediment Connectivity (P(C);
Mahoney et al., 2018), which estimates structural and functional connectiv-
ity. The IC approach has been successfully applied to investigate land use
impacts (Michalek et al., 2021), landslide susceptibility (Persichillo et al.,
2018), and continental-scale climatic and tectonic drivers (Husic and
Michalek, 2022). A major advantage of IC is that it has few data require-
ments, can be calculated from remotely sensed products, and modeling
packages exist for rapid assessment (Crema and Cavalli, 2018; Baldan
et al., 2022). However, a limitation of IC is that it does not consider the
dynamic nature of runoff and soil moisture conditions that may vary con-
siderably over the course of a hydrologic event. Functional connectivity
models, such as P(C), overcome these limitations by resolving runoff and
soil moisture through process-based modeling (Bracken et al., 2015;
Mahoney et al., 2018). There is potential for these dynamic models to
inform how land use change alters connectivity processes related to the
supply, detachment, and transport of sediment from source to sink.

Dynamic connectivity modeling requires the determination of hydro-
logic processes, such as runoff and soil moisture, which can be achieved
with process-based models like the Soil Water Assessment Tool (SWAT)
(Arnold et al., 1998). These models simulate the wetting of the landscape
and the movement of water from the uplands to rivers, which are crucial
components of connectivity modeling (Mahoney et al., 2018). The
watershed-scale probabilistic connectivity approach uses these outputs
from the hydrologic model together with sediment supply, detachment,
and transport estimates to infer connected zones within a watershed
(Mahoney et al., 2020b). Where sediment is available, easily detachable,
and transport pathways exist, watershed-scale connectivity is expected to
prevail, such as in the case of roadside ditches that are designed to effi-
ciently convey flow. Conversely, where these processes are inhibited or
not present, such as in the case of impervious surfaces disconnecting supply
zones, then connectivity may be limited as a result. However, the potential
for connectivity in the uplands of a watershed does not necessarily translate
to pulses of sediment delivery to the stream corridor, due to the presence of
disconnectivities (Fryirs, 2013). To that end, in situ sensing of fluvial
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turbidity (a proxy for sediment concentration) together with numerical
modeling can allow for identification of when a watershed meaningfully
contributes sediment to a river system (Zarnaghsh and Husic, 2021).
While hydrologic modeling, connectivity estimation, and aquatic sensing
have individually (or in tandem) informed investigation of sediment
processes, there is a need to integrate these approaches to assess the impact
of urbanization on the sediment linkage, from the uplands to the river
network.

The objective of this study was to assess the impact of urbanization on
dynamic sediment connectivity at the watershed-scale. We hypothesized
that urban watersheds experience greater sediment connectivity due to in-
creased runoff and excess shear generated from impervious surfaces. To test
this hypothesis, we calibrated a process-based hydrologic model of soil
moisture and runoff processes, applied a probabilistic connectivity model
of erosion and transport processes, and compared in situ turbidity sensing
data to hydrologic and sediment connectivity model predictions.
Thereafter, we investigate the primary land use features, such as roadway
drainages and agricultural fields, that have the potential to influence
watershed-scale connectivity. Lastly, the conceptual model and results pre-
sented herein can be used to inform the prioritization of highly connected,
erosion-prone hotspots for remediation and management.

2. Study site and materials

2.1. Study site

Johnson County is an urbanizing region in northeastern Kansas that has
experienced a 33% growth in population in the last two decades compared
to 4 % growth for the rest of Kansas (USCB, 2020). To facilitate the rapid
expansion in population growth, land use in the county has shifted from
agriculture to urban (Fig. 1). The geographical region is categorized as
lowland plains with an average slope of 3.7° and a temperate climate
(mean annual rainfall: 958 mm). The soils in the study site are primarily
silt loam and silt clay loam (Percich et al., 2022). In the present study,
the five largest watersheds in Johnson County are considered: Blue River,
Kill Creek, Cedar Creek,Mill Creek, and Indian Creek (Table S1). Thewater-
sheds have similar characteristics such as drainage area, precipitation,
and topography but differ greatly with regard to the extent of urban land
use and impervious surface cover. Indian Creek (91.7 %) and Mill Creek
(65.4 %) are the most urbanized basins while Cedar Creek (34.7 %),
Kill Creek (26.2 %), and Blue River (21.5 %) less so. As land cover is
the definitive feature that alters hydrologic processes and sediment trans-
port across the five watersheds, this study region provides an excellent
testbed to examine the impact of urbanization onwatershed-scale sediment
connectivity.

2.2. Materials

Each of the study watersheds was instrumented with a stream gage and
high-frequency turbidity sensor by the United States Geological Survey
(Rasmussen and Gatotho, 2014), including Blue River (068931000), Kill
Creek (06892360), Cedar Creek (06892495), Mill Creek (06892513), and
Indian Creek (06893390) (USGS, 2018). Continuous estimates of sediment
concentration were inferred from turbidity sensing data through linear re-
gression to field-collected suspended sediment samples (n = 18 to 30;
R2 = 0.80 to 0.93; Rasmussen and Gatotho, 2014). The data from these
sites were used to calibrate the hydrologic model and assess storm-driven
delivery of sediment to river corridors. Daily meteorological forcing data,
such as precipitation, relative humidity, wind speed, and temperature
were retrieved from eleven weather stations in Johnson County (Storm
Watch, 2020). Other forcing data like solar radiation were retrieved from
Data Access MERRA-2 (Sparks, 2018). Landcover datasets for land use
and soil composition were downloaded from National Land Class Database
(Wickham et al., 2021; NLCD, 2004; NLCD, 2006) and the National
Cooperative Soil Survey (USDA, 2021), respectively. Road networks were
retrieved from the topologically integrated geographic encoding and
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referencing (TIGER) data set (USCB, 2007). To resolve fine-scale topo-
graphic changes, high resolution 2-m digital elevation maps (DEMS) were
provided by Johnson Country Automated Information Mapping Systems
(AIMS, 2020).

3. Methods

To assess the impact of land use on sediment connectivity, we devel-
oped a workflow that incorporates (1) hydrologic modeling, (2) sediment
connectivity modeling, and (3) aquatic sensing (Fig. 2). Hydrologic model-
ing is critical to assessing soil moisture conditions and the generation of
runoff, which serve as the mechanisms for entraining particles into the sed-
iment cascade in low-relief watersheds. Sediment connectivity modeling
provides a probabilistic assessment of the likelihood for the landscape to
have erodible sediment that can be detached and transported to a down-
stream sink. Lastly, aquatic sensing is used to assess the delivery of pulses
of sediment to the stream corridor as a result of hydrologically driven
flow path activation. Together, these approaches will aid in identifying
connectivity hotspots and the fluvial response to rainfall as well as elucidat-
ing the impact of impervious surfaces and artificial drainages on sediment
connectivity.

3.1. Runoff and soil moisture modeling

3.1.1. Soil water assessment tool
Hydrologic modeling was performed using the Soil Water Assess-

ment Tool (SWAT). SWAT is a continuous, lumped parameter, process-
based model used to simulate the input, storage, routing, and discharge
of water within a watershed (Arnold et al., 2012; Zhang et al., 2019).
SWAT accepts meteorological forcing data as inputs, solves internal
mass-balances following parameterization laws, and outputs state and
flux variables such as soil moisture, runoff, and discharge. Geospatial
data inputs include land cover data, soil data, topology, and watershed
routing information, which aid in parameterizing the discretized
model subdomains. SWAT discretizes the basin of interest into several
Hydrologic Response Units (HRUs), which are groupings of areas with
similar land use, soil type, and slope. For each HRU, SWAT generates
outputs that include soil moisture, runoff, ground water evaporation,
daily curve number, among many other variables. These outputs are
generated for a simulation time step prescribed by the modeler, which
in the present case is daily. For our study basins, there were over 1200
unique HRUs identified by SWAT, but for computational purposes,
less-common HRUs were grouped together down to the 500 most com-
mon HRUs. These 500 most common HRUs represent >90 % of the land-
scape, thus we are confident that the HRU selection captures the spatial
variability in the basin, particularly considering that most SWAT studies
do not exceed 400 HRUs (Wellen et al., 2015).

The basic mass balance equation that SWAT computes to simulate the
hydrologic cycle is the soil water content:

SWt ¼ SW0 þ ∑t
i¼1 Rday � Qsurf � Ea � wseep � Qgw

� �
(1)

where SWt is final soil water content on day i (mm), SW0 is the initial soil
water content (mm), Rday is the precipitation (mm), Qsurf is the surface run-
off (mm), Ea is the amount of evapotranspiration (mm), wseep is the amount
of lateral flow or the amount of water entering the vadose zone (mm), and
Qgw is the amount of return flow to a stream (mm). Daily runoff for the
HRUs (Qsurf ) was determined with NRCS equation as:

Qsurf ¼
Rday � Ia
� �2
Rday � Ia þ S
� �2 (2)

where Ia represents the initial soil abstractions, such as interception, and
soil infiltration prior to day i (mm) and S is the soil retention parameter
(mm) (NRCS, 1972). The retention parameter (S) varies spatially with
3

changes in soil, land cover, and slope, and temporally with changes in soil
water content. The parameter can be calculated as

S ¼ 25:4
1000
CN

� 10
� �

(3)

where CN is the curve number for any given day. The Probability of Con-
nectivity model requires daily runoff (Qsurf) and daily curve number (CN)
estimates, thus these variables are of particular interest as the model was
calibrated and validated in the following steps.

3.1.2. Calibration, validation, and uncertainty
A semi-automated Calibration Uncertainty Program (SWAT-CUP) was

used to find optimal parameterizations for the hydrologic model. Within
SWAT-CUP, the Sequential Uncertainty Fitting (SUFI-2) algorithm was ap-
plied to calibrate, validate, and perform sensitivity analysis (Abbaspour
et al., 2007). We used a survey of literature values or the SWAT defaults
to set the range of all model parameters (Table S2 and S3). The distribution
of values for each parameter was assumed to be uniform and Latin
hypercube sampling was conducted to assess uncertainty. Lastly, the 95 %
prediction uncertainty (95 PPU) was determined by the 2.5 % and 97.5 %
levels of cumulative distribution obtained from the uncertainty analysis
(Abbaspour, 2015).

The SWAT models were calibrated and validated to average daily flow
data at each watershed's outlet from January 1st, 2004 to December 31st,
2007. Three years (2001 to 2004) were used for model warm up, two
years were used for calibration (2004 to 2005), and two years were used
for validation (2006 to 2007). These modeling time periods were chosen
to coincide with the availability of high frequency turbidity sensing data
at our sites. The objective functions we used for calibrating the models
were the Nash-Sutcliffe Efficiency (NSE) and the modified Kling Gupta Effi-
ciency (KGE’) due to their prominence in the hydrologic modeling
literature (Clark et al., 2021; Ferreira et al., 2020). The equations for
these metrics can be found in the Supplementary Materials. NSE is bound
by negative infinity and 1with the upper bound implying a perfect relation-
ship between the simulated and observed discharge. Larger values of KGE’
reflect better model performance with a value of 1 indicating a perfect
match to observed data. The recommended NSE value for ‘satisfactory’ hy-
drologic model is approximately 0.50 for a daily time-step (Moriasi et al.,
2015). Exact benchmarks for ‘satisfactory’ model performance using KGE
are not well-established, but recent work relates a KGE of −0.41 to an
NSE of 0 (the score associated with using the mean of the time series to pre-
dict the model; Knoben et al., 2019), thus we aim for our models to far ex-
ceed that threshold. Additionally, two other metrics were used to assess the
95 PPU: the p-factor and r-factor. The p-factor is the percentage of observed
data that fits within the 95 PPU and r-factor is the thickness of the 95 PPU
band envelop (Arnold et al., 2012; Abbaspour, 2015). Ideally, the p-factor
should be close to 1 and the r-factor should be close to 0.

3.2. Dynamic connectivity modeling

3.2.1. Probability of connectivity
Dynamic sediment connectivity modeling aims to predict the likeli-

hood that sediment eroded at its source is connected to a stream net-
work during a storm event (Mahoney et al., 2018). First, the dynamic
connectivity model approach requires distributed soil moisture and run-
off estimates as inputs, which we continuously simulate using the cali-
brated SWAT model. Second, sediment connectivity can be modeled
using a probabilistic approach to approximate areas that impact trans-
port of sediment from upland source to the stream network (Mahoney
et al., 2018). This probabilistic estimate is termed the probability of sed-
iment connectivity, P(C), which is mathematically formulated as the in-
tersection of multiple probabilities, which represent processes leading
to sediment transport:

P Cð Þ ¼ P Sð Þ∩P DH∪DNHð Þ∩P TH∪TNHð Þ∩ 1 � P Bð Þf g (6)



Fig. 1. Map of stream monitoring sites, weather stations, wastewater treatment facilities, major and minor roads, stream networks, and land use of the study watersheds
within Johnson County, Kansas, USA. The percent urban land cover for each watershed is indicated in the title of each stream outlet.
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where P(S) denotes the probability of sediment supply, P(DH) is
probability of hydrologic detachment, P(DNH) is probability of non-
hydrologic detachment, P(TH) is probability of hydrologic transport,
P(TNH) is probability of non-hydrologic transport, and P(B) is probabil-
ity of sediment buffers. The intersections and unions in Eq. (6) can be
expanded to:

P Cð Þ ¼ P Sð Þ P DHð Þ þ P DNHð Þ−P DHð ÞP DNHð Þ½ �
� P THð Þ þ P TNHð Þ−P THð ÞP TNHð Þ½ � 1−P Bð Þf g ð7Þ

Each probability in Eq. (7) can be calculated when a process is either
known or can be estimated. Except for P(S), all other probability terms
are simulated with a Boolean approach whereby each modeled probability
for each geospatial grid cell is either a “0” or “1”. For example, regarding
detachment, a grid cell may either have sufficient runoff to exceed the crit-
ical shear stress, P(DH)= 1, or not, P(DH)= 0. A complete treatment of the
terms, background, and justification for Eq. (7) can be found in Mahoney
et al. (2018). Below, we will simplify Eq. (7) to consider assumptions and
characteristics specific to our study area. First, non-hydrologic detachment
P DNHð Þ or non-hydrologic transport P TNHð Þ was not considered as most
transport occurs via modeled hydrologic processes as opposed to mass
wasting events, such as landslides. Second, we do not consider the probabil-
ity of buffers P Bð Þ. Mahoney et al. (2018) parameterized the potential im-
pact of buffers P Bð Þ with a field survey of their 65 km2 basin. Our study
area spans a drainage of >600 km2, precluding the feasibility of a field
survey. In their study, buffers contributed the least to disconnectivity
of all factors (Mahoney et al., 2018), thus there is confidence that our re-
sults will remain accurate without the inclusion of P Bð Þ. Nonetheless,
this is a potential limitation that will be discussed later. Considering
these assumptions, Eq. (7) simplifies to the intersection of the remaining
probabilities as P Cð Þ ¼ P Sð Þ∩P Dð Þ∩P Tð Þ. This simplified equation is
solved for every grid cell in the model domain for each day in the
4

simulation period. Thereafter, the results for all grids are integrated
over each watershed's spatial extent to get an overall assessment of
watershed-scale connectivity for each day.

To determine the probability of sediment supply, P(S), we consider the
percent impervious area within a cell (30-m by 30-m grid) to determine the
extent towhich sediment is disconnected. The following equation was used
to simulate P(S) for each geospatial cell (i) as:

Pi Sð Þ ¼ 1 � fimperv, if sediment is present in the cell
0, if sediment is absent from the cell

�
(8)

where i is the index for the geospatial cell and fimperv is the fraction of
impervious land cover. Fraction impervious surface was extracted at
each grid from aerial imagery contained in the National Land Cover
Data (NLCD, 2004). These results were resampled to 2-m by 2-m resolu-
tion to match the topographic DEM resolution used in the hydrologic
modeling.

To determine the probability of detachment P(D), the excessive fluid
shear stress principle was used as:

Pi,j Dð Þ ¼ 1, if τf i,j � τcr i>0

0, if τf i,j � τcr i ≤ 0

�
(9)

where j is the index for the time step, τf i,j is the fluid shear stress of runoff
(Nm−2), and τcr i is the critical shear stress (Nm−2). P(D) varies temporally
due to changes in runoff depth as a function of precipitation and soil condi-
tions. The fluid shear stress was approximated with the fluid momentum
equation, considering one dimensional flow as:

τf ¼ γRi,jSi (10)

where γ is the specific weight of water (N m−3), Ri,j is the runoff depth
determined from the hydrologic model (mm), and Si is the slope of the



Fig. 2. Framework for integrating hydrologic modeling, sediment connectivity
modeling, and aquatic sensing to assess land use impacts on watershed-scale
dynamic sediment connectivity.
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geospatial cell (m/m). Critical shear stress was predicted using the empiri-
cal critical shear stress equation for rangeland soil (Alberts et al., 1995),
which considers sand fraction, organic matter content, and bulk sand den-
sity. The data for soil characteristics were available as soil geospatial layers
using Soil Data Viewer (USDA, 2021).

The probability of upstream transport P(TUS) was parameterized by the
notion that upstream drainage area may be a proxy for volume of concen-
trated runoff with enough magnitude and duration to sustain erosion
(Vandaele, 1993) as:

Pi TUSð Þ ¼ 1, if Si � Scr>0

0, if Si � Scr ≤ 0

�
(11)

where Scr is the critical slope required to initiate gully incision within in
geospatial cell (m/m). Critical slope was parameterized using the formula-
tions by Vandaele (1993) and Torri and Poesen (2014), which consider
curve number, rock cover fragment, and organic matter content as well as
the sand, silt, and clay fractions. The necessary characteristics are retrieved
as soil geospatial layers using Soil Data Viewer (USDA, 2022). The daily
curve number for each HRU is output by the SWAT model and it aims to
simulate the effect that soil moisture, vegetation, land use, and soil type
have on runoff abstractions.
5

Finally, the probability of downstream transport P(TDS) was parameter-
ized by comparing energy inputs into a grid versus the capacity of the grid
to transport sediment as:

Pi,j TDSð Þ ¼ 1, if Si � ΣSup=N>0

0, if Si � ΣSup=N ≤ 0

�
(12)

where ∑Sup is the sum of slopes upstream of cell i, which is then normalized
by the number of upstream cells (N)flowing into a downstream cell i. Eq. 12
compares the fluid energy to transport sediment in cell i with respect to in-
coming fluid energy to transport upstream sediment (Mahoney et al.,
2018). A cell is considered disconnected to downstream transport if those
downstream cells do not have the capacity to entrain further sediment
due to flow and energy limitations.

3.2.2. High-frequency turbidity sensing
Fifteen-minute turbidity sensing data were used to investigate the link-

age between watershed-scale connectivity and fluvial sediment response.
The turbidity data were available from October 2004 to January 2008
and were converted to suspended sediment concentration estimates using
linear regressions developed by the USGS (Rasmussen and Gatotho,
2014). Together with streamflow, a complete time-series of suspended sed-
iment load (QSS, the product of volumetric discharge and sediment concen-
tration) was developed. Thereafter, the 15-min load estimates were
integrated to get daily sediment load results to match the temporal fre-
quency of the SWAT and P(C) models. We created linear regressions of
watershed-scale P(C) vs daily QSS for all ‘connected days’ to assess if the ob-
served sediment transport behavior in the rivers matched the modeled sed-
iment connectivity of the watersheds. A ‘connected day’ is defined as a day
where at least some part of the upland watershed exhibits connectivity
(Mahoney et al., 2018), i.e., P(C)> 0. Thereafter, we investigated the corre-
lation between P(C) and QSS for days that were drier than and wetter than
the median, respectively, to identify potential breakpoints in when
watershed-scale connectivity translates to observed pulses of sediment de-
livery to streams. The strength of the relationship between P(C) and QSS

was assessed with the Pearson correlation coefficient (ρ).

4. Results

4.1. Runoff and soil moisture modeling

The model simulated and observed flows showed satisfactory agree-
ment for the calibration (2004 to 2005) and validation (2006 to 2007) pe-
riods (Fig. S1). The modeled KGE ranged from 0.44 to 0.81 for the
calibration period and 0.44 to 0.67 for the validation period. Likewise,
the NSE values for calibration and validation periods were also satisfactory
and ranged from 0.47 to 0.73 (Table S4). The KGE values for the calibration
and validation periods are within acceptable levels reported in the litera-
ture and far exceed the minimum threshold (KGE = −0.43) that corre-
sponds to an NSE value of 0 (Knoben et al., 2019). The NSE values are
also close to – or greatly exceed – the 0.50 benchmark set as satisfactory
by Moriasi et al. (2015). While there is no recognized benchmark for satis-
factory p-factor or r-factors, our results fall within general ranges provided
in prior studies (Arnold et al., 2012; Abbaspour, 2015). The best performing
models are those of Mill Creek and Indian Creek, which are the most highly
urbanized basins and have the most immediate streamflow reaction in re-
sponse to rainfall. The high degree of impervious area in the urban basins
simplifies some of the hydrologic processes as urban landscapes generate
more runoff and do not have to resolve baseflow and soil moisture condi-
tions to the same degree of accuracy as is required by rural basins to achieve
similar model performance. Lastly, we performed a split-sample calibration
scheme – a constraint imposed by the SWAT software – whereas a k-fold
cross-validation has the potential to generate more robust results (Shen
et al., 2022). These limitations notwithstanding, the SWAT models were
able to satisfactorily resolve the physics of water flow, particularly the
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Fig. 3. The impact of (a) sediment supply, (b) sediment detachment, (c) downstream transport, and (d) upstream transport on overall Probability of Connectivity. (a) Roads
and parking lots limit the sediment source near a soccer field in rural Blue River. (b) Portions of an agricultural ridge with insufficient runoff to induce detachment in Kill
Creek. (c) Steep roadside drainages where downstream sediment transport is channelized inMill Creek. (d) Urban drainage networks in Indian Creek generate sufficient up-
stream inputs into channelized flow paths to sustain sediment transport capacity.
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spatially explicit runoff depths and soil moisture contents, which are crucial
inputs for the sediment connectivity model.

4.2. Dynamic connectivity modeling

4.2.1. Evaluating probabilistic controls of connectivity
Over the four-year period, our watershed-scale model predicted the po-

tential for connectivity on 23.9± 4.2 % of days. To validate sediment con-
nectivity model outputs and how they are impacted by urbanization, we
first visually assessed how each probability in Eq. (6) represented erosion
mechanisms, such as sediment supply, detachment, transport, and overall
connectivity (Fig. 3). Regarding supply P(S), our model predicts that the
presence of impervious surfaces, such as parking lots and roadways, can
be a limiting control of connectivity as these surfaces remove sediment sup-
ply from the sediment cascade and function as a source of disconnectivity
(Fig. 3a). With respect to detachment P(D), as an example, our model
identifies low-gradient ridges in an agricultural field that do not generate
sufficient shear for sediment entrainment (Fig. 3b). Regarding downstream
transport P(TDS), water routing through roadside ditches often provides ef-
ficient transport pathways for downstream sediment connection (Fig. 3c).
Lastly, upstream transport P(TUS) is shown to be an important factor
when the upstream drainage area to a grid cell can generate large amounts
of runoff through high soil moisture conditions, as is the case in channelized
urban drainage systems (Fig. 3d). There was extensive evidence of these
supply, detachment, and transport processes and twenty additional exam-
ples across all basins are presented in the Supplemental Material (Figs. S2
to S6). Taken together, these visual observations indicate that the sediment
connectivity model satisfactorily captures well-established erosion mecha-
nisms, including supply, detachment, upstream energy inputs, and down-
stream transport.

Next, we investigated the relative importance of each probability com-
ponent to a basin's overall sediment connectivity (Fig. 4). We select thewet-
test day of the study period for each basin to aid in comparison, including
Blue River (May 7, 2007), Kill Creek (June 6, 2005), Cedar Creek (May 6,
2007), Mill Creek (Aug 26, 2005), and Indian Creek (May 7, 2007). The
first observation is that the rural watersheds (Blue River, Kill Creek, and
Cedar Creek) have a higher overall P(C) on their wettest days compared
to the urbanwatersheds (Mill Creek and Indian Creek). Regarding the struc-
tural probability indicators, i.e., those that do not change in response to
hydrology, the probability for downstream transport P(TDS) is approxi-
mately the same for all five watersheds, potentially because the mean
slope in all basins is approximately 3.7°, whereas the probability of supply
P(S) shows a substantial gradient of decrease from rural to urban land use.
Results show that the direct impact of urbanization on connectivity is the
removal of the spatial extent of available sediment supply, thus putting an
‘upper limit’ on the amount of a watershed that may be connected during
large hydrologic events. Regarding the functional connectivity indicators,
i.e., those that depend on runoff depth and soil moisture, there does not ap-
pear to be any systematic change in the watershed-scale probability of
7

upstream transport P(TUS) and/or the probability of detachment P
(D) with percent urban land use. The interplay of the static and dynamic
connectivity indicators is highly variable in space (and time for the case
of dynamic indicators), and as such there are zones where supply, detach-
ment, and transport are all possible, thus promoting connectivity, and
other zones where one (or more) of these indicators is not possible, thus
promoting disconnectivity.

Themodeled time series of connectivity indicators highlights the impor-
tance of dynamic sediment detachment P(D) and upstream transport P(TUS)
towards overall sediment connectivity (Fig. 5). Recall that in our multipli-
cative formulation of connectivity (Eq. 6), if a single probability indicator
is equal to “0”, suggesting some limiting disconnectivity, then the overall
probability of connectivity P(C) likewise equals “0”. Given this, it is evident
from the time series that overall connectivity P(C) is most closely associated
with the probability for detachment P(D), which exerts primary control
over connectivity. There exist many instances where the probability of up-
stream transport P(TUS) is possible, but overall connectivity does not occur.
The reason for this is that while the upstream drainage may be capable of
generating overland flow to the cell of interest, the flow inputs do not nec-
essarily exceed the critical shear required for detachment thus preventing
connectivity. The probabilities of supply P(S) and downstream transport P
(TDS) are static and depend only on topography, morphology, and land
cover, which are factors that remain relatively constant over the duration
of the study. Our results show that the probability of supply P(S) and down-
stream transport P(TDS) put a static upper limit on connectivity through
either source or transport limitation, respectively. The probabilities of
detachment P(D) and upstream transport P(TUS) are dynamic and result
in grid cells and pathways turning “on” or “off” depending on hydrologic
conditions.

4.2.2. Evaluating land use impacts on watershed-scale connectivity
Sediment connectivity was spatially distributed across all watersheds

and, on the wettest day for each basin, the urbanwatersheds were systema-
tically less connected than the rural watersheds (Fig. 6). From least-urban
to most-urban, the percent of each watershed connected on its wettest
day was 51 %, 45 %, 38 %, 34 %, and 28 %. The defining difference be-
tween urban and rural watersheds for sediment connectivity is the degree
of impervious land cover (Fig. 7a). Impervious surfaces cover 5.7 % of the
most-rural basin compared to 37.4 % of the most-urban basin. Essentially,
37.4 % of the land in the most-urban basin is indefinitely disconnected
from the transport cascade. This effect is particularly problematic as all of
the watersheds receive the same precipitation inputs, but the sediment
available for erosion is concentrated into a much smaller spatial extent in
the urban watersheds.

Conversely, when considering all wet days, and not just the single wet-
test day, our results show that connectivity is more easily established dur-
ing a typical rain event in the two urban basins than in the rural basins
(p < 0.05 from Mann-Whitney U Test). This is evident in connectivity re-
sults for all wet days where the median P(C), from least-urban to most-



Fig. 5. Modeled time-series of the basin-scale probability of connectivity components, including supply, detachment, upstream transport, and downstream transport. The
percent urban land cover for each watershed is indicated in the title of each subplot.
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urban, was 0.43%, 0.18%, 0.08%, 1.02%, and 0.61% (Fig. 6). The source
of this consistent, elevated connectivity was verified through visual assess-
ment to be the extensive drainage network surrounding residential, busi-
ness, and roadway areas (Fig. 7b). These ephemeral pathways are highly
channelized and designed to facilitate the conveyance of water during
storm events, leading to their frequent activation as sediment transport
pathways. Further, while impervious upstream areas remove the supply
of sediment, these same areas generate considerable runoff that provides
detachment capability for areas downstream, which may be erodible.
8

Thus, results indicate that while the maximal spatial extent of connectivity
is lesser for urban basins, the frequency of connectivity for the typically con-
nected areas is greater.

4.2.3. High frequency turbidity sensing
High frequency turbidity sensing at the pourpoint of each basin was

conducted to assess if watershed-scale connectivity influenced the timing
and magnitude of the fluvial sediment response (Fig. S7). In general, as
the watershed is wetted and sediment becomes connected through
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transport and detachment mechanisms, pulses of sediment loading are ob-
served at the outlet of each watershed. The 23.9±4.2% of days during the
period that have a non-zero extent of watershed-scale functional connectiv-
ity account for 85.0± 9.5 % of sediment export. Thus, peaks in watershed-
scale connectivity generally coincide with large riverine sediment loads.
However, there exist days where observed sediment loading and modeled
watershed-scale connectivity disagree. Watershed-scale connectivity and
in-stream sediment response most frequently differed during periods
when low connectivity was predicted but a high sediment load was ob-
served (see early 2006 for all sites in Fig. S7). These results indicate that
while watershed-scale connectivity generally correlates with stream
loads, there exist other variables that exert an influence on in-stream sedi-
ment loads, particularly during drier days.

With the acknowledgement that watershed-scale connectivity and sedi-
ment loading do not always agree, we sought to identify potential
breakpoints where agreement begins (Fig. 8). In Fig. 8, two linear regres-
sions are shown for the log-transformed values of P(C) and QSS for each
basin: one regression for days that are drier than the median connected
day and a second regression for days that are wetter than the median con-
nected day. The drier-than-median day relationship between log10[QSS]
and log10[P(C)] is typically very weak (ρ ranges from 0.01 to 0.27; not plot-
ted), suggesting that watershed-scale connectivity and fluvial sediment
loading are poorly correlated during low wetness conditions. On the
other hand, results show that a linear relationship between log10[QSS]
and log10[P(C)] is typically initiated at the median connected day for
each basin. For wetter-than-median days, the stream response becomes a
function of watershed-scale connectivity with a fairly strong relationship
inmost basins (ρ ranges from 0.33 to 0.52). Our results indicate that during
high-magnitude hydrologic events, P(C) becomes a good predictor for sed-
iment transport because the broad-scale contribution of the collective wa-
tershed overrides the effects of the most sensitive, isolated pathways that
impart control on sediment transport during smaller events.

5. Discussions

5.1. Urbanization as a limiter and catalyst of watershed-scale sediment transport

Sediment connectivity is governed by the spatial distribution of sedi-
ment sources, transfer pathways, and deposition of sediment from source
to sink (Fryirs et al., 2007; Poeppl et al., 2020). While urbanization has
long been recognized to increase sediment transport, a result largely
attributed to more runoff generation and excess shear (Yorke and Herb,
1978; MacKenzie et al., 2022), our study adds additional mechanistic
9

explanations towards a full understanding of watershed-scale sediment ex-
port from urban basins. Results from this study indicate that the spread of
impervious surfaces limits the available supply of sediment to watershed-
scale export during extreme events, which acts as a source of
disconnectivity along the sediment cascade. However, urbanization also
serves as a “catalyst” for conveying sediment from upstream to down-
stream locations through the enhancement of runoff, increase in the
likelihood of detachment, and frequent wetting of principally connected
pathways. Thus, the effects of urbanization on sediment transport are
particularly insidious as impervious surfaces indefinitely disconnect
sediment in one location from transport while overloading sediment
with runoff in a second erodible location.

Connectivity in rural watersheds is limited more by transport than by
supply as abundant sediment sources exist for erosion, but adequate runoff
for detachment is not always present (Fig. 5). This is consistent with other
studies that have applied the probability of connectivity approach in rural
and forested watersheds throughout Kentucky, USA (Mahoney et al.,
2018; Mahoney et al., 2021). On the other hand, as watersheds undergo
urbanization, they transition from transport limitation (as there is now
abundant runoff) towards supply limitation (as swaths of land are paved
over) (Fryirs et al., 2007). In the most-rural basin, the wettest day of the
study period caused 51% of the watershed to become connected to the wa-
tershed outlet. On the other hand, the most-urban basin had a much lower
extent of connectivity at just 28 % on its wettest day. These results are
largely driven by the impervious land area coverage whereby the most
rural basin has 5.7 % impervious area whereas the most urban basin has
37.4 % impervious area. While each component of the probability of
connectivity equation, P Cð Þ ¼ P Sð Þ∩P Dð Þ∩P Tð Þ, acts to reduce overall
sediment connectivity, rural basin connectivity is most closely related to
the probability of detachment P(D), which sets an upper limit on overall
connectivity.

Conversely, urbanization is most closely related to the probability of
supply – an important structural property of the watershed – through exten-
sive impervious surfaces that effectively put an upper limit on the P
(S) term. Other heavily disturbed watersheds have exhibited similar con-
trols of sediment connectivity. For example, Mahoney et al. (2021) found
that the probability of downstream transport – a function of watershed re-
lief (Eq. 12) – most frequently limited sediment connectivity on reclaimed
mine surfaces in a catchment in eastern Kentucky. On reclaimed mine sur-
faces, soil texture disturbance and compaction reduce infiltration rates such
that storms frequently produce relatively large runoff volumes compared to
the surrounding forestland (Wickham et al., 2007; Warner et al., 2010;
Mahoney et al., 2021). Similar to the urban watersheds presented herein,
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this results in an abundance of fluid energy to detach sediment, and mani-
fests in increased median degrees of connectivity compared to surrounding
land uses. In both types of watersheds (i.e., heavily urbanized, reclaimed
mine) hydrologic processes no longer functioned as limiters of connectivity,
but rather the structural configuration of the watershed – as manifested
through the availability of sediment supply or the watershed's relief – did.
Taken together, these studies provide evidence of a fundamental shift in
the controls of sediment connectivity at the watershed scale as landscape
disturbance increases.

However, it is important to note that there exist potential mecha-
nisms related to urbanization that are not captured by our model. For
example, when land use is changed from rural to urban and as vegeta-
tion is removed, bare soil may become exposed through construction,
which maintains sediment supply but drastically reduces critical shear
stresses leading to likely detachment. However, these types of construc-
tion activities are difficult to capture at the watershed-scale as they ex-
hibit significant spatial and temporal heterogeneity. Further, soon
after construction wanes in urban areas, the sediment supply and
10
exposure decline back to low levels as impervious areas are imple-
mented and vegetation is reestablished (Russell, 2021). Likewise,
inter- and intra-basin differences in the drainage capability of soils
could explain some variation in connectivity results. While the majority
of all basins are typified by NRCS hydrologic group B soils (Fig. S8),
there are zones of group C and D soils, which have lower infiltration ca-
pacity and may promote more runoff generation. Nonetheless, while
soil drainage impacts runoff generation, and thus detachment probabil-
ity, the connectivity results cannot be explained as solely a function of
soils and instead also greatly depend on land cover.

5.2. Urbanization focuses sediment transport into fewer, more frequently wetted
pathways

While supply limitation hinders the maximal extent of connectivity on
the wettest days in urban basins, our results show that for the typical wet
day, urban basins exhibit greater baseline connectivity. For example, on
the median wet day, an average of 0.82 % of all urban basin lands are
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connected compared to just 0.23 % for rural basins (Fig. 6). Thus, during a
common rain event, urban basins exhibit 3.5 times greater connectivity.We
attribute this result to the rapid activation of highly sensitive ephemeral
pathways in urban basins. These pathways are a result of the construction
of drainage networks that aim to route flow through ditches and channels
for the efficient removal of water from urban lands (Hu et al., 2001).
These drainage networks alter the slope andflowdirection of the natural to-
pography and increase the capacity for fluid shear stress to produce hydro-
logic connectivity, resulting in more concentrated flow pathways for
sediment transport (Llena et al., 2019; Mahoney et al., 2018; Zarnaghsh
andHusic, 2021; Batista et al., 2022). It is important to note that the process
of intense agriculture can also create channelized pathways, such as in
areas where native vegetation is removed and replaced with row crops
(Bracken et al., 2015; Persichillo et al., 2017), but for our study area we
see this phenomenon most prominently in urban basins.

Recent work has noted that the most sensitive sediment transport path-
ways in watersheds disproportionately contribute to large amount of sedi-
ment yield (Mahoney et al., 2020b). To this end, prior modeling work in
our study area estimated that as much as 37 ± 4 % of total erosion was
constrained to as little as 5 ± 1 % of the study drainage area (Michalek
et al., 2021), highlighting the need to identify areas that are frequently con-
nected. Batista et al. (2022) also found that higher sediment yieldswere cal-
culated when roads acted as hydraulic conveyor belts between upland
sediment patches and downstream river networks. In this study, we find
that – irrespective of land use – the fluvial sediment response only begins
to correlate with basin-scale sediment connectivity once the watershed ex-
ceeds a certain threshold for connectedness, that is the ‘median connected
day’ (Fig. 8). For half of all connected days, there is essentially no correla-
tion between watershed-scale connectivity and in-stream sediment loading
(ρ< 0.27).However, once themedian connectedness threshold is exceeded,
connectivity and fluvial sediment loading begin to agree (ρ between 0.33
and 0.52). While recent work has indicated that sediment connectivity
alone cannot predict sediment transport (Mahoney et al., 2018; Mahoney
et al., 2020b), our work indicates that there may be thresholds when the
two become more closely linked. These breakpoints in the (de)coupling
of stream and watershed response may be indicative of a shift from func-
tional to structural connectivity (Borselli et al., 2008; Mahoney et al.,
2020b). Thus, results suggest that local heterogeneities and topographic
disconnectivities dominate the sediment load during the drier half of con-
nected days, whereas the watershed-scale response prevails given enough
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hydrologic forcing from large events, and that frequency of pathway wet-
ting is a critical component of sediment delivery to streams.

5.3. Probabilistic modeling to inform best practices and future directions

Nearly all stakeholders who are aware of connectivity-related linkages
use that knowledge to influence their management (Smetanová et al.,
2018); however, due to a lack of data availability and practical methodol-
ogy, less than one-quarter of stakeholders have this awareness. Thus, poten-
tial exists for functional connectivitymodels, such as P(C), to serve as a land
management tool for soil loss mitigation (Mahoney et al., 2018, 2020a,
2020b). Process-based functional connectivity models have the advantage
of simulating dynamic behavior that may change through space and time,
whereas structural connectivity models are static through time. Thus, the
P(C) model can be used for cost-effective insight into areas where sediment
is available, easily detachable, and where transport pathways exist. For ex-
ample, in our urban catchments the P(C) model can be used as a tool to
identify urban areas that are at risk, whichmay benefit from the installation
of erosion control structures to mitigate channel erosion. Additionally, in
erosion-prone agriculture fields, the P(C) model can be used to identify
fields to apply sediment control measures such as vegetation buffers to de-
crease sediment input from the arable land to water bodies (Batista et al.,
2022).

The next steps for the probability of connectivity model application to
our watershed would be to incorporate fine-scale mechanistic transport
modeling to resolve disagreements between watershed-scale connectivity
and fluvial sediment loading. As noted in our results and prior studies
(Mahoney et al., 2018, 2020b), watershed-scale connectivity is not always
a great predictor of sediment transport. This is in contrast to Vigiak et al.
(2012) where the authors of that study find that watershed connectivity
is a significant predictor of sediment flux. Our results provide context to
this apparent disagreement in the literature. First, the timescale of observa-
tion matters, where Vigiak et al. (2012) studied sediment connectivity at
annual timescales whileMahoney et al. (2020b) assed it at daily timescales.
If one looks at connectivity during only the most extreme annual events
over the course of decades, our results indicate that there is agreement of
connectivity with in-stream loading when a threshold of connectedness is
exceeded. In these instances, long-term sediment connectivity patterns
are controlled by structural connectivity (Fryirs, 2013). However, at the
timescale of events that occur dozens of times within a year, smaller
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heterogeneities within a watershed exert more influence than basin-
scale processes, suggesting that functional – rather than structural –
connectivity prevails as a driver in these instances. Hence, to predict
sediment flux, sediment connectivity modeling needs to be coupled
with sediment erosion and routing formulae (Mahoney et al., 2020b)
because sediment connectivity and transport encompasses both struc-
tural and functional connectivity (Fryirs, 2013; Bracken et al., 2015;
Mahoney et al., 2020b).

While the P(C) model shows considerable utility, there are some limita-
tions worth discussing. First, in an effort to simplify sediment transport pro-
cesses and avoid explicitly simulating the sediment continuity equation for
each pixel in the watershed (an endeavor that would be computationally
and epistemologically prohibitive), the P(C) approach does not explicitly
route sediment but rather looks at potential connectivity based on runoff
depths and soil moisture. Second, we do not consider the probability of
buffers in Eq. (7). Buffers, such as floodplains, exist in all watersheds to
varying degrees. We do not have evidence that buffers are more prominent
in one watershed versus another, thus the exclusion of buffers should not
alter our overall results considerably. Further, in Mahoney et al. (2018),
the probability of buffers was the least influential of all parameters in
Eq. (7). Third, we do not consider the probability of non-hydrologic detach-
ment, such as mass-wasting events, construction activities, and tillage.
These phenomena are highly isolated in both space and time and difficult
to constrain with a watershed-scale assessment that primarily focuses on
non-point source processes. The resolution of our impervious dataset is
30-m by 30-m, which could be improved further to reflect the 2-m by 2-
m DEM that is used for topographic assessment as sediment supply in
urban settings can vary drastically from construction sites to open fields
(Russell et al., 2018; Russell, 2021). Despite these limitations, ourmodeling
effort is robust, provides results that are corroborated by previous
literature, and makes new insights into the effects of land use on sediment
connectivity.

6. Conclusions

The overarching goal of this study was to assess how urbanization im-
pacts sediment connectivity at the watershed-scale. Model results suggest
impervious surface cover plays a crucial role in determining the spatial ex-
tent and degree of watershed-scale sediment connectivity. In urban basins,
maximal sediment connectivity is relatively low due to the proliferation of
paved surfaces. On the other hand, these impervious surfaces generate con-
siderable runoff that is conveyed to potentially erodible downstream loca-
tions. For this reason, sensitive ephemeral pathways in urban basins are
wetted 3.5 times more frequently than the equivalent pathways in rural ba-
sins. Our results suggest that the typical (or median) connected day serves
as a breakpoint for when watershed-scale connectivity begins to influence
riverine sediment loading. The P(C) modeling approach can be used as a
tool to illuminate how watershed configuration dictates where sediment
transport may occur, such as in erosion and connectivity hotspots in
urban drainage systems or agriculture fields.
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